Package 'ddp'

Title: Desirable Dietary Pattern
Description: The desirable Dietary Pattern (DDP)/ PPH score measures the variety of food consumption. The (weighted) score is calculated based on the type of food. This package is intended to calculate the DDP/ PPH score that is faster than traditional method via a manual calculation by BKP (2017) <http://bkp.pertanian.go.id/storage/app/uploads/public/5bf/ca9/06b/5bfca906bc654274163456.pdf> and is simpler than the nutrition survey <http://www.nutrisurvey.de>. The database to create weights and baseline values is the Indonesia national survey in 2017.
Authors: Weksi Budiaji [aut, cre]
Maintainer: Weksi Budiaji <[email protected]>
License: GPL-3
Version: 0.0.3
Built: 2024-11-15 04:06:05 UTC
Source: https://github.com/cran/ddp

Help Index


Calory calculation

Description

This function calculates the total calory of each responden.

Usage

kalori(data, output = "all")

Arguments

data

A data set of (n x 218) (see Details).

output

A desirable output, the default is "all" (see Details).

Details

The data set is an n x 218 data frame. The first column is the name of the respondent. The rest columns are types of food. The type of food can be listed as in the data simulation (see in the data example of simulasi or vignette("ddp")).

The output argument has "all" as the default, meaning that all of the calories are yielded. They are energy, protein, fat, and carbohydrate. Single calory can be produced by writing the output argument with "protein" for the calory of protein, for example. The possible inputs for output argument are "all", "energi", "protein", "lemak" for fat, and "karbohidrat".

Value

Function returns a matrix of n x 4 for "all" and n x 1 for other "output" arguments.

Author(s)

Weksi Budiaji
Contact: [email protected]

References

BKP, Kementan. 2017. Aplikasi Harmonisasi Analisis PPH Data Susenas 2017. Badan Ketahanan Pangan Kementrian Pertanian.

Examples

#data simulation of 10 person
set.seed(2020)
n <- 10
matsim <- matrix(0, n, 218)
datsim <- as.data.frame(matsim)
datsim$V1 <- LETTERS[1:n]

#calory for boiled rice
datsim$V2 <- rnorm(n, 200, 50)
#calory for boiled egg
datsim$V73 <- rnorm(n, 60, 5)
#calory for fresh milk
datsim$V79 <- rnorm(n, 100, 10)
#calory for tomato
datsim$V93 <- rnorm(n, 19, 2)
#caloty for pineapple
datsim$V134 <- rnorm(n, 20, 2)

kalori(datsim)

Simulation data

Description

A dataset containing 218 columns and 5 rows. The first column is the name of the respondents, while the rest is the type of food. The type of food is expalined in Indonesian. The simulation data set is a family data set with 5 members. They eat rice (nasi) in a particular weight (in gram), cat fish, spinach (bayam), and banana (pisang lainnya). Three family members drink milk powder. Thus, the data have values in column 1, 28, 81, 85, and 135 only.

Usage

simulasi

Format

A data frame with 5 rows and 218 columns:

Nama

The name of respondents

X1

Beras:beras lokal, kualitas unggul, impor

X2

Beras ketan

X3

Jagung basah dengan kulit

X4

Jagung pipilan/beras jagung

X5

Tepung beras

X6

Tepung jagung:maizena

X7

Tepung terigu

X8

Padi-padian lainnya

X9

Ketela pohon/singkong

X10

Ketela rambat/ubi jalar

X11

Sagu:bukan dari ketela pohon

X12

Talas/keladi

X13

Kentang

X14

Gaplek

X15

Tepung Gaplek: tiwul

X16

Tepung ketela pohon: tapioka/kanji

X17

Umbi-umbian lainnya

X18

Ekor kuning segar

X19

Tongkol/tuna/cakalang segar

X20

Tenggiri segar

X21

Selar segar

X22

Kembung segar

X23

Teri segar

X24

Bandeng segar

X25

Gabus segar

X26

Mujair/Nila segar

X27

Mas segar

X28

lele segar

X29

Kakap segar

X30

Baronang segar

X31

Patin segar

X32

Bawalsegar

X33

Gurame segar

X34

Ikan segar/basah lainnya

X35

Udang segar

X36

Cumi-cumi/sotong segar

X37

Ketam/kepiting/rajungan segar

X38

Kerang/siput segar

X39

Udang dan hewan air lainnya yang segar lainnya

X40

Kembung diawetkan/peda

X41

Tenggiri diawetkan

X42

Tongkol/tuna/cakalang diawetkan

X43

Teri diawetkan

X44

Selar diawetkan

X45

Sepat diawetkan

X46

Bandeng diawetkan

X47

Gabus diawetkan

X48

Ikan dalam kaleng

X49

Ikan diawetkan lainnya

X50

Udang: ebi, rebon diawetkan

X51

Cumi-cumi/sotong diawetkan

X52

Udang dan hewan air lainnya yang diawetkan

X53

Daging sapi segar

X54

Daging kerbau segar

X55

Daging kambing segar

X56

Daging babi segar

X57

Daging ayam ras segar

X58

Daging ayam kampung segar

X59

Daging bebek/itik segar

X60

Daging unggas segar lainnya

X61

Daging segar lainnya

X62

Dendeng

X63

Abon: sapi, ayam, rusa, dsb

X64

Daging dalam kaleng: kornet, dsb

X65

Sosis, nuget, daging asap, bakso diawetkan

X66

Daging diawetkan lainnya

X67

Hati

X68

Jeroan: usus, paru, limpa, babat, ampela, dsb

X69

Tetelan

X70

Tulang

X71

Kategori daging lainnya selain dari 53 s.d 70

X72

Telur ayam ras

X73

Telur ayam kampung

X74

Telur itik/manila

X75

Telur puyuh

X76

Telur lainnya

X77

Telur asin

X78

Susu murni

X79

Susu cair pabrik

X80

Susu kental manis

X81

Susu bubuk

X82

Susu bubuk bayi

X83

Keju

X84

Hasil lain dari susu

X85

Bayam

X86

Kangkung

X87

Kol/kubis

X88

Sawi putih/ petsai

X89

Sawi hijau

X90

Buncis

X91

Kacang panjang

X92

Tomat sayur

X93

Wortel

X94

Mentimun

X95

Daun ketela pohon/ daun singkong

X96

Terung

X97

Tauge

X98

Labu

X99

Jagung muda

X100

Bahan sayur sop/ cap cay

X101

Bahan sayur asem/ lodeh

X102

Nangka muda

X103

Pepaya muda

X104

Jamur

X105

Petai

X106

Jengkol

X107

Bawang merah

X108

Bawang putih

X109

Cabe merah

X110

Cabe hijau

X111

Cabe rawit

X112

Sayur dalam kaleng

X113

Sayur-sayuran lainnya

X114

Kacang tanah tanpa kulit

X115

Kacang tanah dengan kulit

X116

Kacang kedelai

X117

Kacang hijau

X118

Kacang mede

X119

Kacang lainnya

X120

Tahu

X121

Tempe

X122

Tauco

X123

Oncom

X124

Hasil lain dari kacang-kacangan

X125

Jeruk

X126

Mangga

X127

Apel

X128

Alpokat

X129

Rambutan

X130

Duku

X131

Durian

X132

Salak

X133

Nanas

X134

Pisang ambon

X135

Pisang lainnya

X136

Pepaya

X137

Jambu

X138

Sawo

X139

Belimbing

X140

Kedondong

X141

Semangka

X142

Melon

X143

Nangka

X144

Tomat buah

X145

Buah dalam kaleng

X146

Buah-buahan lainnya

X147

Minyak kelapa

X148

Minyak jagung

X149

Minyak goreng

X150

Kelapa

X151

Margin

X152

Minyak dan kelapa lainnya

X153

Gula pasir

X154

Gula merah/ gula cair

X155

Teh bubuk

X156

Teh celup: sachet

X157

Kopi: bubuk, biji

X158

Kopi instan: sachet

X159

Coklat instan

X160

Coklat bubuk

X161

Sirup

X162

Bahan minuman lainnya

X163

Garam

X164

Kemiri

X165

Ketumbar/ jinten

X166

Merica/ lada

X167

Asam

X168

Terasi/ petis

X169

Kecap

X170

Penyedap masakan/ vetsin

X171

Sambal jadi

X172

Saos tomat

X173

Bumbu masak jadi/ kemasan

X174

Bumbu dapur lainnya: pala, jahe, kunyit, dsb

X175

Mie instan

X176

Mie basah

X177

Bihun

X178

Makaroni/ mie kering

X179

Kerupuk

X180

Emping

X181

Bahan agar-agar

X182

Bubur bayi kemasan

X183

Konsumsi lainnya selain nomor 175 s.d 182

X184

Roti tawar

X185

Roti manis/ lainnya

X186

Kue kering/ biskuit

X187

Kue basah

X188

Makanan gorengan

X189

Bubur kacang hijau

X190

Gado-gado/ ketoprak/ pecel

X191

Nasi campur/ rames

X192

Nasi goreng

X193

Nasi putih

X194

Lontong/ ketupat sayur

X195

Soto/ gulai/ sop/ rawon/ cincang

X196

Sayur matang

X197

Sate/ tongseng

X198

Mie bakso/ rebus/ goreng

X199

Mie instan makanan jadi

X200

Makanan ringan anak-anak

X201

Ikan matang

X202

Ayam/ daging matang

X203

Daging olahan matang

X204

Bubur ayam

X205

Siomay/ batagor

X206

Makanan jadi lainnya

X207

Air kemasan

X208

Air kemasan galon

X209

Air teh kemasan

X210

Saribuah kemasan

X211

Minuman ringan C02: soda

X212

Minuman kesahatan/ energi

X213

Minuman jadi: kopi, susu, teh, susu coklat, dsb

X214

Es krim

X215

Es lainnya

X216

Bir

X217

Minuman beralkohol lainnya


Desirable dietary pattern calculation

Description

This function calculates the desirable dietary pattern (DDP).

Usage

skorpph(data, wilayah = "Indonesia", baseline = 2000)

Arguments

data

A data set of (n x 218) (see Details).

wilayah

An origin of the responden residence. (see Details).

baseline

A baseline value of personal calory required.

Details

The data set is an n x 218 data frame. The first column is the name of the respondent. wilayah argument has "Indonesia" as the default, meaning that the DPP are calculated based on the national (Indonesia) baseline. The other possible inputs for wilayah are "Aceh", "Sumut", "Sumbar", "Riau", "KepRiau", "Jambi", "Sumsel", "Babel", "Bengkulu", "Lampung", "Jakarta", "Jabar", "Banten", "Jateng", "DIY", "Jatim", "Bali", "NTB", "NTT", "Kalbar", "Kalteng", "Kalsel", "Kaltim", "Kalut", "Sulut", "Sulteng", "Sultra", "Sulsel", "Gorontalo", "Sulbar", "Maluku", "Malut", "Papua", "Papbar". For baseline argument, it is 2000 as the default value because the minimal calory required in Indonesia is 2000 calory.

Value

Function returns a vector with n length indicates the index/ indices of the DDP per peson.

Author(s)

Weksi Budiaji
Contact: [email protected]

References

BKP, Kementan. 2017. Aplikasi Harmonisasi Analisis PPH Data Susenas 2017. Badan Ketahanan Pangan Kementrian Pertanian.

Examples

#data simulation of 10 person
set.seed(2020)
n <- 10
matsim <- matrix(0, n, 218)
datsim <- as.data.frame(matsim)
datsim$V1 <- LETTERS[1:n]

#calory for boiled rice
datsim$V2 <- rnorm(n, 200, 50)
#calory for boiled egg
datsim$V73 <- rnorm(n, 60, 5)
#calory for fresh milk
datsim$V79 <- rnorm(n, 100, 10)
#calory for tomato
datsim$V93 <- rnorm(n, 19, 2)
#caloty for pineapple
datsim$V134 <- rnorm(n, 20, 2)

skorpph(datsim)

Validity and Reliability check.

Description

This function calculates the item-rest correlation.

Usage

valid(data, alpha = 0.05, total = NULL)

Arguments

data

A data set/ matrix (see Details).

alpha

An alpha value (see Details).

total

A single numeric value of the index column (see Details).

Details

The data set is a data frame/ matrix n x k. The row is the name of the respondent as many as n, while the column is the variables (k). The alpha value is set between 0.0001 and 0.20, the default is 0.05. If the total input is NULL, it means that the total score will be calculated first, the column index of the total score can be also stated otherwise. The index of the column is a numeric value with a length of one. It has to be between 1 and (k).

Value

Function returns a data frame with k row and four columns. the columns indicate the item-rest correlation, correlation threshold, p value, and validity and reliability conclusion.

Author(s)

Weksi Budiaji
Contact: [email protected]

Examples

#data simulation of 10 person 5 variables
set.seed(1)
dat <- matrix(sample(1:7,10*5, replace = TRUE), 10,5)
valid(dat)